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Dynamical Systems

Typical setting
A pair (X, T), where
e X a topological space,

e T: X — X a continuous map.

Interested in the long term evolution of iterates of T

T"=To---0oT
—fold
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Linear Dynamics

Topological & linear structure

Setting

@ X separable Hilbert, Banach, or Fréchet space.

@ T: X — X a continuous linear operator.
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Linear Dynamics
Topological & linear structure

Setting
@ X separable Hilbert, Banach, or Fréchet space.

@ T: X — X a continuous linear operator.

Recall
A Fréchet space is a vector space X, endowed with an increasing

sequence (|| - [Ix) ey ©f seminorms that define the metric

00
—k x =yl
d = E o~k 12 Tlk X
(X,}/) i 1+ HX_ka’ (X,YE )

under which X is complete.
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Linear Dynamics

Definition
If there exists x € X such that

{x, Tx, T?x, T3x,...}
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Linear Dynamics

Definition
If there exists x € X such that

{x, Tx, T?x, T3x,...} =X

then T is a hypercyclic operator.

@ Such an x € X called a hypercyclic vector for T.
@ Interesting dynamics? Only in the infinite dimensional setting.

Examples
e Birkhoff (1929): translation operator
f(z) — f(z+ a)

for a # 0 on the space of entire functions H(C).
@ MacLane (1952): differentiation operator on H(C)

D: f—f. )22



Linear Dynamics

History

o Kitai (1982): unpublished PhD thesis.

e Gethner and Shapiro (1987).
@ Active research: 1990s ...
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Linear Dynamics

History

o Kitai (1982): unpublished PhD thesis.
e Gethner and Shapiro (1987).
@ Active research: 1990s ...

[§ F. Bayart and E. Matheron.
Dynamics of linear operators.
Cambridge Tracts in Mathematics, vol. 179. Cambridge

University Press, Cambridge, 2009.

[§ K.-G. Grosse-Erdmann and A. Peris Manguillot.

Linear chaos.
Universitext. Springer, London, 2011.
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Hypercyclicity

Hypercyclicity not an exotic phenomenon

Theorem (Ansari-Bernal (Bonet and Peris))

Every infinite-dimensional, separable Banach (Fréchet) space
supports a hypercyclic operator.
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Hypercyclicity

Hypercyclicity not an exotic phenomenon

Theorem (Ansari-Bernal (Bonet and Peris))
Every infinite-dimensional, separable Banach (Fréchet) space
supports a hypercyclic operator.

Some motivation (Functional Analysis)

@ Counter examples to the invariant subspace problem.

@ Read (1988): 3T : ¢* — ¢* such that every nonzero x € £} is
a hypercyclic vector for T.
= T does not possess a non-trivial, closed invariant subset.
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Chaos (Devaney, 1989)

@ Chaotic system: wild behaviour plus some regularity.
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Chaos (Devaney, 1989)

@ Chaotic system: wild behaviour plus some regularity.

Linear Chaos (in the sense of Devaney):

T: X — X a continuous linear operator.

T hypercyclic
& = T chaotic (Devaney)
T has dense set of periodic points

Recall x € X a periodic point for T if dn > 1 such that T"x = x.

Examples

e Translation f(z) — f(z + a) for a # 0 on H(C).
e Differentiation D: f — f’ on H(C).
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Recurrence in Linear Dynamics
T:-X—=X

Given any nonempty, open U C X,

V)
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Recurrence in Linear Dynamics
T:-X—=X

Given any nonempty, open U C X,

v T

Tr+lx

Density of the T-orbit in U?
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Recurrence in Linear Dynamics
T:-X—=X

Given any nonempty, open U C X,

v T

Density of the T-orbit in U?

T is frequently hypercyclic if there exists x € X such that for any
nonempty, open U C X we have

- TN <n<
iminf PN Tx €U, 1<ns N} g
N—o0 N 8/22




Frequently Hypercyclic Operators

e Bayart and Grivaux (2004).
@ x € X a frequently hypercyclic vector for T.
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Frequently Hypercyclic Operators

e Bayart and Grivaux (2004).

@ x € X a frequently hypercyclic vector for T.
Examples

e Translation f(z) — f(z + a) on H(C), a # 0.

e Differentiation D: f — f" on H(C).

Some properties
@ Hypercyclic =& frequently hypercyclic.

@ There exist separable Fréchet spaces with no frequently
hypercyclic operators.
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Chaos (Li-Yorke, 1975)

First mention of chaos in mathematical literature

@ X a separable Banach space.

@ T: X — X a continuous linear operator.
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First mention of chaos in mathematical literature

@ X a separable Banach space.

@ T: X — X a continuous linear operator.

Definition (Li and Yorke)

T is Li-Yorke chaotic if there exists an uncountable ' C X such
that for every pair (x,y) € [ x I' of distinct points we have

liminf || T"x — T"y|| =0
n—oo
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Chaos (Li-Yorke, 1975)

First mention of chaos in mathematical literature

@ X a separable Banach space.

@ T: X — X a continuous linear operator.

Definition (Li and Yorke)

T is Li-Yorke chaotic if there exists an uncountable ' C X such
that for every pair (x,y) € [ x I' of distinct points we have

liminf || T"x — T"y|| =0 and limsup||T"x— T"y| > 0.
n—oo n—oo

@ Pairs are proximal but not asymptotic.

Li-Yorke Chaos ‘ Hypercyclicity
Local aspects of dynamics
of pairs of vectors.

Complex global behaviour.
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Irregularity
Setting

@ X a Banach space.

@ T: X — X a continuous linear operator.
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Irregularity
Setting

@ X a Banach space.

@ T: X — X a continuous linear operator.

Definition (Beauzamy, 1988)

We say x € X is an irregular vector for T if there exist increasing
sequences (jx) and (ny) of positive integers such that

lim T%x=0 and lim || T™x| = occ.
k— o0 k—oc0

@ Connection to Li-Yorke chaos: Bermudez, Bonilla,
Martinez-Giménez and Peris (2011).

@ Generalised to Fréchet space setting: Bernardes, Bonilla,
Miiller, Peris (2015).

@ T hypercyclic = T admits an irregular vector.
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Distributional Chaos
@ The upper density of a set A C N is defined as

— An{l,2,...
dens(A) ::Iimsup| nil.2 ,n}|.

n— o0 n
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@ The upper density of a set A C N is defined as

— An{l,2,...
dens(A) ::Iimsup| nil.2 ,n}|.

n— o0 n

@ X a Banach space.

@ T: X — X a continuous linear operator.
Definition
The vector x € X is distributionally irregular for T if there exist
A, B C N with

dens(A) = 1 = dens(B)
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@ The upper density of a set A C N is defined as
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n— o0 n

@ X a Banach space.
@ T: X — X a continuous linear operator.
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A, B C N with
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Distributional Chaos
@ The upper density of a set A C N is defined as

dens An{L2,...
dens(A) = limsup A 11220 i

n— o0 n

@ X a Banach space.
@ T: X — X a continuous linear operator.

Definition
The vector x € X is distributionally irregular for T if there exist
A, B C N with

dens(A) = 1 = dens(B)

such that
lim T"x =0and lim || T"x|| = oc.
neA neB
@ The orbit has a more complicated statistical dependence.

@ The usual suspects: Translation and differentiation on H(C).
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Chaotic Relationships

o T distributionally irregular <= T distributionally chaotic.
(Bermljdez, Bonilla, Martinez-Giménezz, Peris, 2011; & Bernardes,
Bonilla, Miiller, Peris, 2013)

@ Distributional chaos =% hypercyclic. (Martinez-Giménez,
Oprocha, Peris 2009)

e Distributionally chaos =% frequently hypercyclic. (Bermidez,
Bonilla, Martinez-Giménez, Peris, 2011)

e Distributionally chaos =%~ Devaney chaos. (Bermiidez, Bonilla,
Martinez-Giménezz, Peris, 2011)

e Hypercyclic =% distributional chaos. (Martinez-Giménez,
Oprocha, Peris 2013)

@ Frequent hypercyclicity =~ distributional chaos. (Bayart and
Ruzsa, 2015)

@ Devaney chaos =& distributional chaos. (Menet, 2017)

@ Devaney chaos =& frequently hypercyclic. (Menet, 2017)
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Aspects of Linear Dynamics

{Linear Dynamics]

Properties of x {Properties of T}
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Aspects of Linear Dynamics

[Linear Dynamics}

Properties of x {Properties of T}

Today's Question:

What are the permissible growth rates of entire functions that are
‘chaotic’ with respect to differentiation?
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Entire Functions
D:fsf

Growth
o f € HC).

@ For 1 < p < oo, the average LP-norm on a sphere of radius

r>0
1 27 . 1/P
. it
My(f, ) = (277/0 I£(re’t)|P dt)

@ Forp=w
Moo(f,r) == sup |f(z)]

|z|=r

for r > 0.
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Hypercyclic Case
D:frsf
1<p<oo

@ Initial estimates: MacLane (1952).
@ Sharp growth: Grosse-Erdmann (1990), Shkarin (1993).

o Proof: weighted Banach space & a sufficient condition.
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Hypercyclic Case
D:frsf
1<p<oo

@ Initial estimates: MacLane (1952).
@ Sharp growth: Grosse-Erdmann (1990), Shkarin (1993).

o Proof: weighted Banach space & a sufficient condition.

e For any function ¢: Ry — R4, with ¢(r) — oo as r — o0,
there exists a D-hypercyclic entire function f € H(C) with

er

Mp(f7 r) S gp(r) f1/2

for r > 0 sufficiently large.
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Hypercyclic Case
D:frsf
1<p<oo

@ Initial estimates: MacLane (1952).
@ Sharp growth: Grosse-Erdmann (1990), Shkarin (1993).
o Proof: weighted Banach space & a sufficient condition.
e For any function ¢: Ry — R4, with ¢(r) — oo as r — o0,
there exists a D-hypercyclic entire function f € H(C) with

er
Mp(f7 r) S gp(r) f1/2

for r > 0 sufficiently large.

@ There does not exist a D-hypercyclic entire function f € H(C)
with
er
< -
My(f,r) < Cr1/2
for a constant C > 0 and radius r > 0.
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Frequently Hypercyclic Case
D:frsf

e Initial estimates: Blasco, Bonilla, Grosse-Erdmann (2010),
Bonet and Bonilla (2013).

e Proof: weighted Banach space & a sufficient condition.

e Optimal growth: Drasin and Saksman (2012).
e Proof: explicit construction.
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Frequently Hypercyclic Case
D:fisf
e Initial estimates: Blasco, Bonilla, Grosse-Erdmann (2010),
Bonet and Bonilla (2013).

e Proof: weighted Banach space & a sufficient condition.

e Optimal growth: Drasin and Saksman (2012).
e Proof: explicit construction.

@ For any C > 0 there exists a D-frequently hypercyclic entire
function f € H(C) with

r

e
Moo(far)gcm

for all r > 0. (Also holds for 1 < p < c0)

e p=1. Forany ¢: Ry — Ry, with ¢(r) — 0o as r — oo,
there exists a D-frequently hypercyclic entire function
f € H(C) with

r

e
My(f,r) < So(f)m
for all r > 0. (Bonet and Bonilla, 2013.)
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Irregular Case
D:frsf

For1 <p <.

e Bernal-Gonzélez and Bonilla (2016).
e Proof: weighted Banach space & a sufficient condition.
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Distributionally Irregular Case
D:frsf

For1 < p<oo.

o Initial estimates: Bernal-Gonzélez and Bonilla (2016).
e Proof: explicit construction.

e G., Martinez-Giménez and Peris (2019).
e Proof: weighted Banach space & a sufficient condition.
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Distributionally Irregular Case
D:frsf

For1 < p<oo.

o Initial estimates: Bernal-Gonzélez and Bonilla (2016).
e Proof: explicit construction.

e G., Martinez-Giménez and Peris (2019).

e Proof: weighted Banach space & a sufficient condition.

Theorem (G., Martinez-Giménez and Peris, 2019)

Let a = (2max{2,p})~t. Forany ¢: R, — R with p(r) — oo
as r — oo, there exists a D-distributionally irregular entire function
f with

er
Ma(F.1) < (1)

for r > 0 sufficiently large.
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Harmonic Functions

Partial differentiation on the space of harmonic functions on R
Hypercyclic
o Aldred and Armitage (1998).

Frequently hypercyclic

@ Blasco, Bonilla and Grosse-Erdmann (2010).
e G., Saksman and Tylli (2019).

Distributional chaos

e G., Martinez-Giménez and Peris (2019).
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Thank you for your attention! ®
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