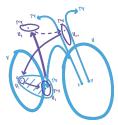
Distributionally Chaotic Functions

Clifford Gilmore (With F. Martínez-Giménez and A. Peris)

University College Cork

AGA In memory of Richard Timoney May 2019



Dynamical Systems

Typical setting

- A pair (X, T), where
 - X a topological space,
 - $T: X \to X$ a continuous map.

Interested in the long term evolution of iterates of T

$$T^n = \underbrace{T \circ \cdots \circ T}_{n-\text{fold}}$$

Linear Dynamics Topological & linear structure

Setting

- X separable Hilbert, Banach, or Fréchet space.
- $T: X \to X$ a continuous linear operator.

Linear Dynamics Topological & linear structure

Setting

- X separable Hilbert, Banach, or Fréchet space.
- $T: X \to X$ a continuous linear operator.

Recall

A *Fréchet space* is a vector space X, endowed with an increasing sequence $(\| \cdot \|_k)_{k \in \mathbb{N}}$ of seminorms that define the metric

$$d(x,y) := \sum_{k=1}^{\infty} 2^{-k} \frac{\|x-y\|_k}{1+\|x-y\|_k}, \qquad (x,y \in X)$$

under which X is complete.

Definition If there exists $x \in X$ such that

$$\overline{\{x, Tx, T^2x, T^3x, \dots\}} = X$$

then T is a *hypercyclic operator*.

- Such an $x \in X$ called a *hypercyclic vector* for T.
- Interesting dynamics? Only in the infinite dimensional setting.

Examples

• Birkhoff (1929): translation operator

 $f(z)\mapsto f(z+a)$

for $a \neq 0$ on the space of entire functions $H(\mathbb{C})$.

• MacLane (1952): differentiation operator on $H(\mathbb{C})$

 $D\colon f\mapsto f'.$

Definition If there exists $x \in X$ such that

$$\overline{\{x, Tx, T^2x, T^3x, \dots\}} = X$$

then T is a *hypercyclic operator*.

- Such an $x \in X$ called a *hypercyclic vector* for T.
- Interesting dynamics? Only in the infinite dimensional setting.

Examples

• Birkhoff (1929): translation operator

 $f(z)\mapsto f(z+a)$

for $a \neq 0$ on the space of entire functions $H(\mathbb{C})$.

• MacLane (1952): differentiation operator on $H(\mathbb{C})$

 $D\colon f\mapsto f'.$

Definition If there exists $x \in X$ such that

$$\overline{\{x, Tx, T^2x, T^3x, \dots\}} = X$$

then T is a hypercyclic operator.

- Such an $x \in X$ called a *hypercyclic vector* for T.
- Interesting dynamics? Only in the infinite dimensional setting.

Examples

• Birkhoff (1929): translation operator

 $f(z)\mapsto f(z+a)$

for $a \neq 0$ on the space of entire functions $H(\mathbb{C})$.

• MacLane (1952): differentiation operator on $H(\mathbb{C})$

 $D\colon f\mapsto f'.$

Definition If there exists $x \in X$ such that

$$\overline{\{x, Tx, T^2x, T^3x, \dots\}} = X$$

then T is a hypercyclic operator.

- Such an $x \in X$ called a *hypercyclic vector* for T.
- Interesting dynamics? Only in the infinite dimensional setting.

Examples

• Birkhoff (1929): translation operator

 $f(z) \mapsto f(z+a)$

for a ≠ 0 on the space of entire functions H(C).
MacLane (1952): differentiation operator on H(C)

 $D\colon f\mapsto f'$

Definition If there exists $x \in X$ such that

$$\overline{\{x, Tx, T^2x, T^3x, \dots\}} = X$$

then T is a hypercyclic operator.

- Such an $x \in X$ called a *hypercyclic vector* for T.
- Interesting dynamics? Only in the infinite dimensional setting.

Examples

• Birkhoff (1929): translation operator

 $f(z) \mapsto f(z+a)$

for $a \neq 0$ on the space of entire functions $H(\mathbb{C})$.

• MacLane (1952): differentiation operator on $H(\mathbb{C})$

 $D: f \mapsto f'.$

History

- Kitai (1982): unpublished PhD thesis.
- Gethner and Shapiro (1987).
- Active research: 1990s ...

History

- Kitai (1982): unpublished PhD thesis.
- Gethner and Shapiro (1987).
- Active research: 1990s ...
- F. Bayart and É. Matheron.

Dynamics of linear operators.

Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge, 2009.

K.-G. Grosse-Erdmann and A. Peris Manguillot. Linear chaos. Universitext. Springer, London, 2011.

Hypercyclicity

Hypercyclicity not an exotic phenomenon

Theorem (Ansari-Bernal (Bonet and Peris))

Every infinite-dimensional, separable Banach (Fréchet) space supports a hypercyclic operator.

Some motivation (Functional Analysis)

- Counter examples to the invariant subspace problem.
- Read (1988): $\exists T : \ell^1 \to \ell^1$ such that every nonzero $x \in \ell^1$ is a hypercyclic vector for T.

 \implies T does not possess a non-trivial, closed invariant subset.

Hypercyclicity

Hypercyclicity not an exotic phenomenon

Theorem (Ansari-Bernal (Bonet and Peris))

Every infinite-dimensional, separable Banach (Fréchet) space supports a hypercyclic operator.

Some motivation (Functional Analysis)

- Counter examples to the invariant subspace problem.
- Read (1988): ∃T: l¹ → l¹ such that every nonzero x ∈ l¹ is a hypercyclic vector for T.

 \implies T does not possess a non-trivial, closed invariant subset.

• Chaotic system: *wild behaviour* plus some *regularity*.

• Chaotic system: wild behaviour plus some regularity.

Linear Chaos (in the sense of Devaney):

 $T: X \to X$ a continuous linear operator.

T hypercyclic & T has dense set of periodic points

• Chaotic system: wild behaviour plus some regularity.

Linear Chaos (in the sense of Devaney):

 $T: X \to X$ a continuous linear operator.

• Chaotic system: wild behaviour plus some regularity.

Linear Chaos (in the sense of Devaney):

 $T: X \to X$ a continuous linear operator.

$$\left. \begin{array}{c} T \text{ hypercyclic} \\ \& \\ T \text{ has dense set of periodic points} \end{array} \right\} \implies T \text{ chaotic (Devaney)}$$

Recall $x \in X$ a *periodic point* for T if $\exists n \ge 1$ such that $T^n x = x$.

• Chaotic system: wild behaviour plus some regularity.

Linear Chaos (in the sense of Devaney):

 $T: X \to X$ a continuous linear operator.

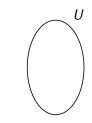
$$\left.\begin{array}{c} T \text{ hypercyclic} \\ \& \\ T \text{ has dense set of periodic points} \end{array}\right\} \implies T \text{ chaotic (Devaney)}$$

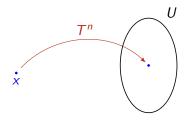
Recall $x \in X$ a *periodic point* for T if $\exists n \ge 1$ such that $T^n x = x$.

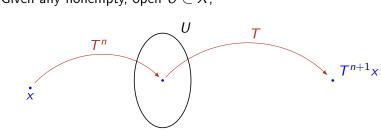
Examples

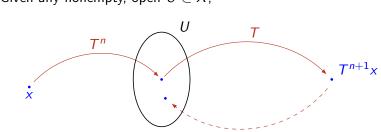
- Translation $f(z) \mapsto f(z+a)$ for $a \neq 0$ on $H(\mathbb{C})$.
- Differentiation $D: f \mapsto f'$ on $H(\mathbb{C})$.

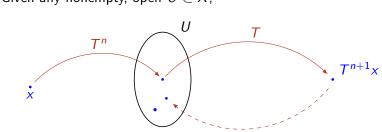
• x

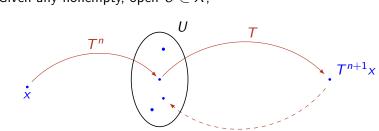


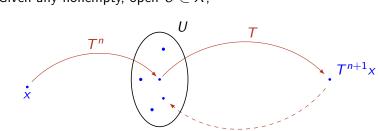


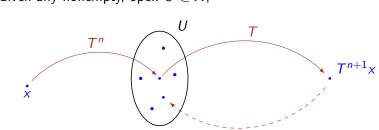


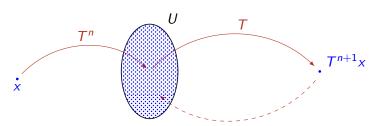


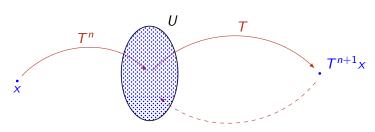








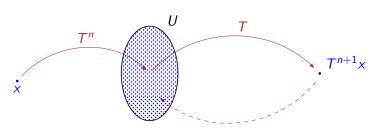




Given any nonempty, open $U \subset X$,

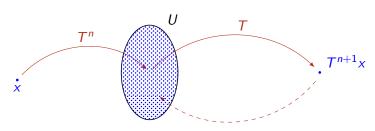
Density of the T-orbit in U?

$\{n: T^n x \in U, 1 \le n \le N\}$



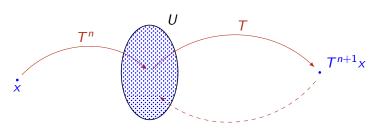
Given any nonempty, open $U \subset X$,

 $\{n: T^n x \in U, 1 \le n \le N\}$



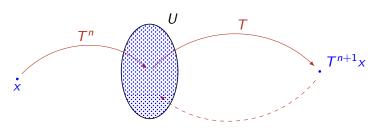
Given any nonempty, open $U \subset X$,

$$\{n: T^n x \in U, 1 \le n \le N\}$$



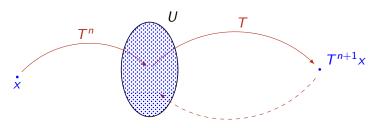
Given any nonempty, open $U \subset X$,

$$\# \{n : T^n x \in U, 1 \le n \le N\}$$



Given any nonempty, open $U \subset X$,

$$\frac{\#\{n: T^n x \in U, 1 \le n \le N\}}{}$$



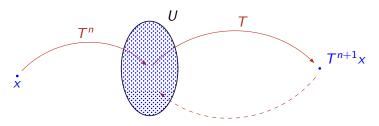
Given any nonempty, open $U \subset X$,

$$\liminf_{N\to\infty}\frac{\#\{n: T^n x\in U, 1\leq n\leq N\}}{N}$$



Given any nonempty, open $U \subset X$,

$$\liminf_{N\to\infty}\frac{\#\left\{n \ : \ T^n x \in U, \ 1\leq n\leq N\right\}}{N} > 0.$$



Given any nonempty, open $U \subset X$,

Density of the T-orbit in U?

T is *frequently hypercyclic* if there exists $x \in X$ such that for any nonempty, open $U \subset X$ we have

$$\liminf_{N\to\infty}\frac{\#\{n: T^n x\in U, 1\leq n\leq N\}}{N}>0.$$

Frequently Hypercyclic Operators

- Bayart and Grivaux (2004).
- $x \in X$ a frequently hypercyclic vector for T.

Examples

- Translation $f(z) \mapsto f(z+a)$ on $H(\mathbb{C})$, $a \neq 0$.
- Differentiation $D: f \mapsto f'$ on $H(\mathbb{C})$.

Some properties

- Hypercyclic \implies frequently hypercyclic.
- There exist separable Fréchet spaces with no frequently hypercyclic operators.

Frequently Hypercyclic Operators

- Bayart and Grivaux (2004).
- $x \in X$ a frequently hypercyclic vector for T.

Examples

- Translation $f(z) \mapsto f(z+a)$ on $H(\mathbb{C})$, $a \neq 0$.
- Differentiation $D: f \mapsto f'$ on $H(\mathbb{C})$.

Some properties

- Hypercyclic \implies frequently hypercyclic.
- There exist separable Fréchet spaces with no frequently hypercyclic operators.

Frequently Hypercyclic Operators

- Bayart and Grivaux (2004).
- $x \in X$ a frequently hypercyclic vector for T.

Examples

- Translation $f(z) \mapsto f(z+a)$ on $H(\mathbb{C})$, $a \neq 0$.
- Differentiation $D: f \mapsto f'$ on $H(\mathbb{C})$.

Some properties

- Hypercyclic \implies frequently hypercyclic.
- There exist separable Fréchet spaces with no frequently hypercyclic operators.

First mention of chaos in mathematical literature

- X a separable Banach space.
- $T: X \to X$ a continuous linear operator.

Definition (Li and Yorke)

T is *Li-Yorke chaotic* if there exists an uncountable $\Gamma \subset X$ such that for every pair $(x, y) \in \Gamma \times \Gamma$ of distinct points we have

$$\liminf_{n\to\infty} \|T^n x - T^n y\| = 0 \quad \text{and} \quad \limsup_{n\to\infty} \|T^n x - T^n y\| > 0.$$

Li-Yorke Chaos	Hypercyclicity
Local aspects of dynamics of pairs of vectors.	Complex global behaviour.

First mention of chaos in mathematical literature

- X a separable Banach space.
- $T: X \to X$ a continuous linear operator.

Definition (Li and Yorke)

T is *Li-Yorke chaotic* if there exists an uncountable $\Gamma \subset X$ such that for every pair $(x, y) \in \Gamma \times \Gamma$ of distinct points we have

$$\liminf_{n\to\infty} \|T^n x - T^n y\| = 0 \quad \text{and} \quad \limsup_{n\to\infty} \|T^n x - T^n y\| > 0.$$

Li-Yorke Chaos	Hypercyclicity
Local aspects of dynamics of pairs of vectors.	Complex global behaviour.

First mention of chaos in mathematical literature

- X a separable Banach space.
- $T: X \to X$ a continuous linear operator.

Definition (Li and Yorke)

T is *Li-Yorke chaotic* if there exists an uncountable $\Gamma \subset X$ such that for every pair $(x, y) \in \Gamma \times \Gamma$ of distinct points we have

$$\liminf_{n\to\infty} \|T^n x - T^n y\| = 0 \quad \text{and} \quad \limsup_{n\to\infty} \|T^n x - T^n y\| > 0.$$

Li-Yorke Chaos	Hypercyclicity
Local aspects of dynamics of pairs of vectors.	Complex global behaviour.

First mention of chaos in mathematical literature

- X a separable Banach space.
- $T: X \to X$ a continuous linear operator.

Definition (Li and Yorke)

T is *Li-Yorke chaotic* if there exists an uncountable $\Gamma \subset X$ such that for every pair $(x, y) \in \Gamma \times \Gamma$ of distinct points we have

$$\liminf_{n\to\infty} \|T^n x - T^n y\| = 0 \quad \text{and} \quad \limsup_{n\to\infty} \|T^n x - T^n y\| > 0.$$

Li-Yorke Chaos	Hypercyclicity
Local aspects of dynamics of pairs of vectors.	Complex global behaviour.

First mention of chaos in mathematical literature

- X a separable Banach space.
- $T: X \to X$ a continuous linear operator.

Definition (Li and Yorke)

T is *Li-Yorke chaotic* if there exists an uncountable $\Gamma \subset X$ such that for every pair $(x, y) \in \Gamma \times \Gamma$ of distinct points we have

$$\liminf_{n\to\infty} \|T^n x - T^n y\| = 0 \quad \text{and} \quad \limsup_{n\to\infty} \|T^n x - T^n y\| > 0.$$

Li-Yorke Chaos	Hypercyclicity
Local aspects of dynamics of pairs of vectors.	Complex global behaviour.

First mention of chaos in mathematical literature

- X a separable Banach space.
- $T: X \to X$ a continuous linear operator.

Definition (Li and Yorke)

T is *Li-Yorke chaotic* if there exists an uncountable $\Gamma \subset X$ such that for every pair $(x, y) \in \Gamma \times \Gamma$ of distinct points we have

$$\liminf_{n\to\infty} \|T^n x - T^n y\| = 0 \quad \text{and} \quad \limsup_{n\to\infty} \|T^n x - T^n y\| > 0.$$

Li-Yorke Chaos	Hypercyclicity
Local aspects of dynamics of pairs of vectors.	Complex global behaviour.

Setting

- X a Banach space.
- $T: X \to X$ a continuous linear operator.

Definition (Beauzamy, 1988)

$$\lim_{k\to\infty} T^{j_k} x = 0 \quad \text{and} \quad \lim_{k\to\infty} \|T^{n_k} x\| = \infty$$

- Connection to Li-Yorke chaos: Bermúdez, Bonilla, Martínez-Giménez and Peris (2011).
- Generalised to Fréchet space setting: Bernardes, Bonilla, Müller, Peris (2015).
- T hypercyclic \implies T admits an irregular vector.

Setting

- X a Banach space.
- $T: X \to X$ a continuous linear operator.

Definition (Beauzamy, 1988)

$$\lim_{k\to\infty} T^{J_k} x = 0 \quad \text{and} \quad \lim_{k\to\infty} \|T^{n_k} x\| = \infty.$$

- Connection to Li-Yorke chaos: Bermúdez, Bonilla, Martínez-Giménez and Peris (2011).
- Generalised to Fréchet space setting: Bernardes, Bonilla, Müller, Peris (2015).
- T hypercyclic \implies T admits an irregular vector.

Setting

- X a Banach space.
- $T: X \to X$ a continuous linear operator.

Definition (Beauzamy, 1988)

$$\lim_{k\to\infty} T^{j_k}x=0 \quad \text{ and } \quad \lim_{k\to\infty} \|T^{n_k}x\|=\infty.$$

- Connection to Li-Yorke chaos: Bermúdez, Bonilla, Martínez-Giménez and Peris (2011).
- Generalised to Fréchet space setting: Bernardes, Bonilla, Müller, Peris (2015).
- T hypercyclic \implies T admits an irregular vector.

Setting

- X a Banach space.
- $T: X \to X$ a continuous linear operator.

Definition (Beauzamy, 1988)

$$\lim_{k\to\infty} T^{j_k}x=0 \quad \text{ and } \quad \lim_{k\to\infty} \|T^{n_k}x\|=\infty.$$

- Connection to Li-Yorke chaos: Bermúdez, Bonilla, Martínez-Giménez and Peris (2011).
- Generalised to Fréchet space setting: Bernardes, Bonilla, Müller, Peris (2015).
- T hypercyclic \implies T admits an irregular vector.

• The *upper density* of a set $A \subset \mathbb{N}$ is defined as

$$\overline{\mathsf{dens}}(A) \coloneqq \limsup_{n \to \infty} \frac{|A \cap \{1, 2, \dots, n\}|}{n}$$

• X a Banach space.

• $T: X \to X$ a continuous linear operator.

Definition

The vector $x \in X$ is *distributionally irregular* for T if there exist $A, B \subset \mathbb{N}$ with

$$\overline{\mathsf{dens}}(A) = 1 = \overline{\mathsf{dens}}(B)$$

such that

$$\lim_{n \in A} T^n x = 0 \text{ and } \lim_{n \in B} ||T^n x|| = \infty.$$

• The orbit has a more complicated statistical dependence.

• The usual suspects: Translation and differentiation on $H(\mathbb{C})$.

• The *upper density* of a set $A \subset \mathbb{N}$ is defined as

$$\overline{\mathsf{dens}}(A) \coloneqq \limsup_{n \to \infty} \frac{|A \cap \{1, 2, \dots, n\}|}{n}$$

- X a Banach space.
- $T: X \to X$ a continuous linear operator.

Definition

The vector $x \in X$ is *distributionally irregular* for T if there exist $A, B \subset \mathbb{N}$ with

$$\overline{\mathsf{dens}}(A) = 1 = \overline{\mathsf{dens}}(B)$$

such that

$$\lim_{n \in A} T^n x = 0 \text{ and } \lim_{n \in B} ||T^n x|| = \infty.$$

- The orbit has a more complicated statistical dependence.
- The usual suspects: Translation and differentiation on $H(\mathbb{C})$.

• The *upper density* of a set $A \subset \mathbb{N}$ is defined as

$$\overline{\mathsf{dens}}(A) \coloneqq \limsup_{n \to \infty} \frac{|A \cap \{1, 2, \dots, n\}|}{n}$$

- X a Banach space.
- $T: X \to X$ a continuous linear operator.

Definition

The vector $x \in X$ is *distributionally irregular* for T if there exist $A, B \subset \mathbb{N}$ with

$$\overline{\mathsf{dens}}(A) = 1 = \overline{\mathsf{dens}}(B)$$

such that

$$\lim_{n\in A} T^n x = 0 \text{ and } \lim_{n\in B} \|T^n x\| = \infty.$$

• The orbit has a more complicated statistical dependence.

• The usual suspects: Translation and differentiation on $H(\mathbb{C})$.

• The *upper density* of a set $A \subset \mathbb{N}$ is defined as

$$\overline{\mathsf{dens}}(A) := \limsup_{n \to \infty} \frac{|A \cap \{1, 2, \dots, n\}|}{n}$$

- X a Banach space.
- $T: X \to X$ a continuous linear operator.

Definition

The vector $x \in X$ is *distributionally irregular* for T if there exist $A, B \subset \mathbb{N}$ with

$$\overline{\mathsf{dens}}(A) = 1 = \overline{\mathsf{dens}}(B)$$

such that

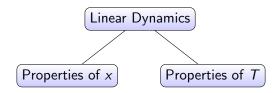
$$\lim_{n\in A} T^n x = 0 \text{ and } \lim_{n\in B} \|T^n x\| = \infty.$$

- The orbit has a more complicated statistical dependence.
- The usual suspects: Translation and differentiation on $H(\mathbb{C})$.

Chaotic Relationships

- T distributionally irregular <=> T distributionally chaotic. (Bermúdez, Bonilla, Martínez-Giménezz, Peris, 2011; & Bernardes, Bonilla, Múller, Peris, 2013)
- Distributional chaos ⇒ hypercyclic. (Martínez-Giménez, Oprocha, Peris 2009)
- Distributionally chaos → frequently hypercyclic. (Bermúdez, Bonilla, Martínez-Giménez, Peris, 2011)
- Distributionally chaos → Devaney chaos. (Bermúdez, Bonilla, Martínez-Giménezz, Peris, 2011)
- Hypercyclic → distributional chaos. (Martínez-Giménez, Oprocha, Peris 2013)
- Frequent hypercyclicity ⇒ distributional chaos. (Bayart and Ruzsa, 2015)
- Devaney chaos \implies *distributional chaos*. (Menet, 2017)
- Devaney chaos \implies frequently hypercyclic. (Menet, 2017)

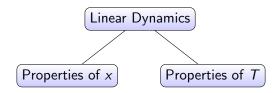
Aspects of Linear Dynamics



Today's Question:

What are the permissible *growth rates* of entire functions that are *'chaotic'* with respect to differentiation?

Aspects of Linear Dynamics



Today's Question:

What are the permissible *growth rates* of entire functions that are *'chaotic'* with respect to differentiation?

Entire Functions $D: f \mapsto f'$

Growth

- $f \in H(\mathbb{C})$.
- For $1 \le p < \infty$, the average L^p -norm on a sphere of radius r > 0

$$M_{p}(f,r) \coloneqq \left(\frac{1}{2\pi} \int_{0}^{2\pi} |f(re^{it})|^{p} dt\right)^{1/p}$$

• For $p = \infty$

$$M_{\infty}(f,r) \coloneqq \sup_{|z|=r} |f(z)|$$

for r > 0.

Hypercyclic Case $D: f \mapsto f'$

- $1 \leq p \leq \infty.$
 - Initial estimates: MacLane (1952).
 - Sharp growth: Grosse-Erdmann (1990), Shkarin (1993).
 Proof: weighted Banach space & a sufficient condition.
 - For any function φ: ℝ₊ → ℝ₊, with φ(r) → ∞ as r → ∞, there exists a D-hypercyclic entire function f ∈ H(ℂ) with

$$M_p(f,r) \le \varphi(r) rac{e^r}{r^{1/2}}$$

for r > 0 sufficiently large.

There does not exist a *D*-hypercyclic entire function *f* ∈ *H*(ℂ) with

$$M_p(f,r) \le C rac{e^r}{r^{1/2}}$$

Hypercyclic Case $D: f \mapsto f'$

- $1 \leq p \leq \infty$.
 - Initial estimates: MacLane (1952).
 - Sharp growth: Grosse-Erdmann (1990), Shkarin (1993).
 Proof: weighted Banach space & a sufficient condition.
 - For any function φ: ℝ₊ → ℝ₊, with φ(r) → ∞ as r → ∞, there exists a D-hypercyclic entire function f ∈ H(ℂ) with

$$M_p(f,r) \le \varphi(r) \frac{e^r}{r^{1/2}}$$

for r > 0 sufficiently large.

There does not exist a *D*-hypercyclic entire function *f* ∈ *H*(ℂ) with

$$M_p(f,r) \leq C rac{e^r}{r^{1/2}}$$

Hypercyclic Case $D: f \mapsto f'$

- $1 \leq p \leq \infty.$
 - Initial estimates: MacLane (1952).
 - Sharp growth: Grosse-Erdmann (1990), Shkarin (1993).
 Proof: weighted Banach space & a sufficient condition.
 - For any function φ: ℝ₊ → ℝ₊, with φ(r) → ∞ as r → ∞, there exists a D-hypercyclic entire function f ∈ H(ℂ) with

$$M_p(f,r) \le \varphi(r) \frac{e^r}{r^{1/2}}$$

for r > 0 sufficiently large.

There does not exist a *D*-hypercyclic entire function *f* ∈ *H*(ℂ) with

$$M_p(f,r) \leq C rac{e^r}{r^{1/2}}$$

Frequently Hypercyclic Case $D: f \mapsto f'$

- Initial estimates: Blasco, Bonilla, Grosse-Erdmann (2010), Bonet and Bonilla (2013).
 - Proof: weighted Banach space & a sufficient condition.
- Optimal growth: Drasin and Saksman (2012).
 - Proof: explicit construction.
- For any C > 0 there exists a D-frequently hypercyclic entire function f ∈ H(C) with

$$M_{\infty}(f,r) \leq C \frac{e^r}{r^{1/4}}$$

for all r > 0. (Also holds for 1)

 p = 1. For any φ: ℝ₊ → ℝ₊, with φ(r) → ∞ as r → ∞, there exists a D-frequently hypercyclic entire function f ∈ H(ℂ) with

$$M_1(f,r) \leq \varphi(r) rac{e'}{r^{1/2}}$$

for all r > 0. (Bonet and Bonilla, 2013.)

Frequently Hypercyclic Case $D: f \mapsto f'$

- Initial estimates: Blasco, Bonilla, Grosse-Erdmann (2010), Bonet and Bonilla (2013).
 - Proof: weighted Banach space & a sufficient condition.
- Optimal growth: Drasin and Saksman (2012).
 - Proof: explicit construction.
- For any C > 0 there exists a D-frequently hypercyclic entire function f ∈ H(C) with

$$M_{\infty}(f,r) \leq C rac{e^r}{r^{1/4}}$$

for all r > 0. (Also holds for 1

 p = 1. For any φ: ℝ₊ → ℝ₊, with φ(r) → ∞ as r → ∞, there exists a D-frequently hypercyclic entire function f ∈ H(ℂ) with

$$M_1(f,r) \le \varphi(r) \frac{e^r}{r^{1/2}}$$

for all r > 0. (Bonet and Bonilla, 2013.)

Frequently Hypercyclic Case $D: f \mapsto f'$

- Initial estimates: Blasco, Bonilla, Grosse-Erdmann (2010), Bonet and Bonilla (2013).
 - Proof: weighted Banach space & a sufficient condition.
- Optimal growth: Drasin and Saksman (2012).
 - Proof: explicit construction.
- For any C > 0 there exists a D-frequently hypercyclic entire function f ∈ H(C) with

$$M_{\infty}(f,r) \leq C rac{e^r}{r^{1/4}}$$

for all r > 0. (Also holds for 1

 p = 1. For any φ: ℝ₊ → ℝ₊, with φ(r) → ∞ as r → ∞, there exists a D-frequently hypercyclic entire function f ∈ H(ℂ) with

$$M_1(f,r) \le \varphi(r) \frac{e^r}{r^{1/2}}$$

for all r > 0. (Bonet and Bonilla, 2013.)

Irregular Case $D: f \mapsto f'$

For $1 \leq p \leq \infty$.

- Bernal-González and Bonilla (2016).
 - Proof: weighted Banach space & a sufficient condition.
- For any function $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$, with $\varphi(r) \to \infty$ as $r \to \infty$, there exists a *D*-irregular entire function $f \in H(\mathbb{C})$ with

$$M_p(f,r) \le \varphi(r) \frac{e^r}{r^{1/2}}$$

for r > 0 sufficiently large.

There does not exist a *D*-irregular entire function *f* ∈ *H*(ℂ) with

$$M_p(f,r) \leq C rac{e^r}{r^{1/2}}$$

Irregular Case $D: f \mapsto f'$

For $1 \leq p \leq \infty$.

- Bernal-González and Bonilla (2016).
 - Proof: weighted Banach space & a sufficient condition.
- For any function $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$, with $\varphi(r) \to \infty$ as $r \to \infty$, there exists a *D*-irregular entire function $f \in H(\mathbb{C})$ with

$$M_p(f,r) \leq \varphi(r) \frac{e^r}{r^{1/2}}$$

for r > 0 sufficiently large.

There does not exist a *D*-irregular entire function *f* ∈ *H*(ℂ) with

$$M_p(f,r) \leq C rac{e^r}{r^{1/2}}$$

Irregular Case $D: f \mapsto f'$

For $1 \leq p \leq \infty$.

- Bernal-González and Bonilla (2016).
 - Proof: weighted Banach space & a sufficient condition.
- For any function $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$, with $\varphi(r) \to \infty$ as $r \to \infty$, there exists a *D*-irregular entire function $f \in H(\mathbb{C})$ with

$$M_p(f,r) \leq \varphi(r) \frac{e^r}{r^{1/2}}$$

for r > 0 sufficiently large.

There does not exist a *D*-irregular entire function *f* ∈ *H*(ℂ) with

$$M_p(f,r) \leq C rac{e^r}{r^{1/2}}$$

Distributionally Irregular Case $D: f \mapsto f'$

For $1 \leq p \leq \infty$.

- Initial estimates: Bernal-González and Bonilla (2016).
 - Proof: explicit construction.
- G., Martínez-Giménez and Peris (2019).
 - Proof: weighted Banach space & a sufficient condition.

Theorem (G., Martínez-Giménez and Peris, 2019) Let $a = (2 \max \{2, p\})^{-1}$. For any $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$ with $\varphi(r) \to \infty$ as $r \to \infty$, there exists a D-distributionally irregular entire function f with

$$M_p(f,r) \le \varphi(r) rac{e'}{r^a}$$

for r > 0 sufficiently large.

Distributionally Irregular Case $D: f \mapsto f'$

For $1 \leq p \leq \infty$.

- Initial estimates: Bernal-González and Bonilla (2016).
 Proof: explicit construction.
- G., Martínez-Giménez and Peris (2019).
 - Proof: weighted Banach space & a sufficient condition.

Theorem (G., Martínez-Giménez and Peris, 2019) Let $a = (2 \max \{2, p\})^{-1}$. For any $\varphi \colon \mathbb{R}_+ \to \mathbb{R}_+$ with $\varphi(r) \to \infty$ as $r \to \infty$, there exists a D-distributionally irregular entire function f with

$$M_p(f,r) \le \varphi(r) rac{e'}{r^a}$$

for r > 0 sufficiently large.

Harmonic Functions

Partial differentiation on the space of harmonic functions on \mathbb{R}^{N}

Hypercyclic

• Aldred and Armitage (1998).

Frequently hypercyclic

- Blasco, Bonilla and Grosse-Erdmann (2010).
- G., Saksman and Tylli (2019).

Distributional chaos

• G., Martínez-Giménez and Peris (2019).

Thank you for your attention! ©

M. P. Aldred and D. H. Armitage.

Harmonic analogues of G. R. MacLane's universal functions. J. London Math. Soc. (2), 57(1):148–156, 1998.

M. P. Aldred and D. H. Armitage. Harmonic analogues of G. R. Mac Lane's universal functions II. J. Math. Anal. Appl., 220(1):382–395, 1998.

L. Bernal-González and A. Bonilla.

Order of growth of distributionally irregular entire functions for the differentiation operator.

Complex Var. Elliptic Equ., 61(8):1176–1186, 2016.

O. Blasco, A. Bonilla and K.-G. Grosse-Erdmann. Rate of growth of frequently hypercyclic functions. *Proc. Edinb. Math. Soc.* (2), 53(1):39–59, 2010.

J. Bonet and A. Bonilla.

Chaos of the differentiation operator on weighted Banach spaces of entire functions.

Complex Anal. Oper. Theory, 7(1):33-42, 2013.

K.-G. Grosse-Erdmann.

On the universal functions of G. R. MacLane. Complex Variables Theory Appl., 15(3):193–196, 1990.

Thank you for your attention! $\hfill \odot$

D. Drasin and E. Saksman.

Optimal growth of entire functions frequently hypercyclic for the differentiation operator.

J. Funct. Anal., 263(11):3674-3688, 2012.

C. Gilmore, E. Saksman and H.-O. Tylli.

Optimal growth of harmonic functions frequently hypercyclic for the partial differentiation operator.

Proc. Roy. Soc. Edinburgh Sect. A, online first, 1–18, 2019. DOI:10.1017/prm.2018.82.

C. Gilmore, F. Martínez-Giménez and A. Peris. Growth of distributionally chaotic functions. ArXiv:1810.09266.

S. A. Shkarin.

On the growth of *D*-universal functions.

Vestnik Moskov. Univ. Ser. I Mat. Mekh., (6):80-83 (1994), 1993.